Occupation Profile for Radiologic Technologists and Technicians

Take X-rays and CAT scans or administer nonradioactive materials into patient's blood stream for diagnostic purposes. Includes technologists who specialize in other modalities, such as computed tomography and magnetic resonance. Includes workers whose primary duties are to demonstrate portions of the human body on X-ray film or fluoroscopic screen.

 
 

Significant Points

  • Employment is projected to grow faster than average, and job opportunities are expected to be favorable.
  • Formal training programs in radiography are offered in hospitals, colleges and universities, and less frequently at vocational-technical institutes; range in length from 1 to 4 years; and lead to a certificate, an associate degree, or a bachelor’s degree.
  • Although hospitals will remain the primary employer, a number of new jobs will be found in physicians’ offices and diagnostic imaging centers.

 

 
 
Overview
$48,170.00 Median Annual Wage 6,000 Average Job Openings Per Year
0.6 Average Unemployment Percentage 7.2 Percentage That Completed High School
196,000 Employment Numbers in 2006 67.9 Percentage That Had Some College
226,000 Employment Numbers in 2016 (est.) 24.9 Percentage That Went Beyond College Degree

Training

Preparation for this profession is offered in hospitals, colleges and universities, and less frequently at vocational-technical institutes. Hospitals employ most radiologic technologists. Employers prefer to hire technologists with formal training.

Education and training. Formal training programs in radiography range in length from 1 to 4 years and lead to a certificate, an associate degree, or a bachelor’s degree. Two-year associate degree programs are most prevalent.

Some 1-year certificate programs are available for experienced radiographers or individuals from other health occupations, such as medical technologists and registered nurses, who want to change fields. A bachelor’s or master’s degree in one of the radiologic technologies is desirable for supervisory, administrative, or teaching positions.

The Joint Review Committee on Education in Radiologic Technology accredits most formal training programs for the field. The committee accredited more than 600 radiography programs in 2007. Admission to radiography programs require, at a minimum, a high school diploma or the equivalent. High school courses in mathematics, physics, chemistry, and biology are helpful. The programs provide both classroom and clinical instruction in anatomy and physiology, patient care procedures, radiation physics, radiation protection, principles of imaging, medical terminology, positioning of patients, medical ethics, radiobiology, and pathology.

Licensure. Federal legislation protects the public from the hazards of unnecessary exposure to medical and dental radiation by ensuring that operators of radiologic equipment are properly trained. Under this legislation, the Federal Government sets voluntary standards that the States may use for accrediting training programs and licensing individuals who engage in medical or dental radiography. In 2007, 40 states required licensure for practicing radiologic technologists and technicians.

Certification and other qualifications. The American Registry of Radiologic Technologists (ARRT) offers voluntary certification for radiologic technologists. In addition, 35 States use ARRT-administered exams for State licensing purposes. To be eligible for certification, technologists generally must graduate from an accredited program and pass an examination. Many employers prefer to hire certified radiographers. To be recertified, radiographers must complete 24 hours of continuing education every 2 years.

Radiologic technologists should be sensitive to patients’ physical and psychological needs. They must pay attention to detail, follow instructions, and work as part of a team. In addition, operating complicated equipment requires mechanical ability and manual dexterity.

Advancement. With experience and additional training, staff technologists may become specialists, performing CT scanning, MR, and angiography, a procedure during which blood vessels are x rayed to find clots. Technologists also may advance, with additional education and certification, to become a radiologist assistant.

Experienced technologists also may be promoted to supervisor, chief radiologic technologist, and, ultimately, department administrator or director. Depending on the institution, courses or a master’s degree in business or health administration may be necessary for the director’s position.

Some technologists progress by specializing in the occupation to become instructors or directors in radiologic technology programs; others take jobs as sales representatives or instructors with equipment manufacturers.

Nature of Work

Radiologic technologists take x rays and administer nonradioactive materials into patients’ bloodstreams for diagnostic purposes.

Radiologic technologists also referred to as radiographers, produce x-ray films (radiographs) of parts of the human body for use in diagnosing medical problems. They prepare patients for radiologic examinations by explaining the procedure, removing jewelry and other articles through which x rays cannot pass, and positioning patients so that the parts of the body can be appropriately radiographed. To prevent unnecessary exposure to radiation, these workers surround the exposed area with radiation protection devices, such as lead shields, or limit the size of the x-ray beam. Radiographers position radiographic equipment at the correct angle and height over the appropriate area of a patient’s body. Using instruments similar to a measuring tape, they may measure the thickness of the section to be radiographed and set controls on the x-ray machine to produce radiographs of the appropriate density, detail, and contrast. They place the x-ray film under the part of the patient’s body to be examined and make the exposure. They then remove the film and develop it.

Radiologic technologists must follow physicians’ orders precisely and conform to regulations concerning the use of radiation to protect themselves, their patients, and their coworkers from unnecessary exposure.

In addition to preparing patients and operating equipment, radiologic technologists keep patient records and adjust and maintain equipment. They also may prepare work schedules, evaluate purchases of equipment, or manage a radiology department.

Experienced radiographers may perform more complex imaging procedures. When performing fluoroscopies, for example, radiographers prepare a solution of contrast medium for the patient to drink, allowing the radiologist (a physician who interprets radiographs) to see soft tissues in the body.

Some radiographers specialize in computed tomography (CT), and are sometimes referred to as CT technologists. CT scans produce a substantial amount of cross-sectional x rays of an area of the body. From those cross-sectional x rays, a three-dimensional image is made. The CT uses ionizing radiation; therefore, it requires the same precautionary measures that radiographers use with other x rays.

Radiographers also can specialize in Magnetic Resonance Imaging as an MR technologist. MR, like CT, produces multiple cross-sectional images to create a 3-dimensional image. Unlike CT, MR uses non-ionizing radio frequency to generate image contrast.

Another common specialty for radiographers specialize in is mammography. Mammographers use low dose x-ray systems to produce images of the breast.

In addition to radiologic technologists, others who conduct diagnostic imaging procedures include cardiovascular technologists and technicians, diagnostic medical sonographers, and nuclear medicine technologists. (Each is discussed elsewhere in the Handbook.)

Work environment. Physical stamina is important in this occupation because technologists are on their feet for long periods and may lift or turn disabled patients. Technologists work at diagnostic machines but also may perform some procedures at patients’ bedsides. Some travel to patients in large vans equipped with sophisticated diagnostic equipment.

Although radiation hazards exist in this occupation, they are minimized by the use of lead aprons, gloves, and other shielding devices, as well as by instruments monitoring exposure to radiation. Technologists wear badges measuring radiation levels in the radiation area, and detailed records are kept on their cumulative lifetime dose.

Most full-time radiologic technologists work about 40 hours a week. They may, however, have evening, weekend, or on-call hours. Opportunities for part-time and shift work also are available.

Sources: Career Guide to Industries (CGI), Occupational Information Network (O*Net), Occupation Outlook Handbook (OOH)
Earnings

Median annual earnings of radiologic technologists were $48,170 in May 2006. The middle 50 percent earned between $39,840 and $57,940. The lowest 10 percent earned less than $32,750, and the highest 10 percent earned more than $68,920. Median annual earnings in the industries employing the largest numbers of radiologic technologists in 2006 were:

Medical and diagnostic laboratories $51,280
General medical and surgical hospitals 48,830
Offices of physicians 45,500

For the latest wage information:

The above wage data are from the Occupational Employment Statistics (OES) survey program, unless otherwise noted. For the latest National, State, and local earnings data, visit the following pages:

  • Radiologic technologists and technicians
  • Job Outlook

    Employment is projected to grow faster than average, and job opportunities are expected to be favorable.

    Employment change. Employment of radiologic technologists is expected to increase by about 15 percent from 2006 to 2016, faster than the average for all occupations. As the population grows and ages, there will be an increasing demand for diagnostic imaging. Although health care providers are enthusiastic about the clinical benefits of new technologies, the extent to which they are adopted depends largely on cost and reimbursement considerations. As technology advances many imaging modalities are becoming less expensive and their adoption is becoming more widespread. For example, digital imaging technology can improve the quality of the images and the efficiency of the procedure, but it remains slightly more expensive than analog imaging, a procedure during which the image is put directly on film. Despite this, digital imaging is becoming more widespread in many imaging facilities because of the advantages it provides over analog.

    Although hospitals will remain the principal employer of radiologic technologists, a number of new jobs will be found in offices of physicians and diagnostic imaging centers. Health facilities such as these are expected to grow through 2016, because of the shift toward outpatient care, encouraged by third-party payers and made possible by technological advances that permit more procedures to be performed outside the hospital.

    Job prospects. In addition to job growth, job openings also will arise from the need to replace technologists who leave the occupation. Radiologic technologists are willing to relocate and who also are experienced in more than one diagnostic imaging procedure—such as CT, MR, and mammography—will have the best employment opportunities as employers seek to control costs by using multi-credentialed employees.

    CT is becoming a frontline diagnosis tool. Instead of taking x rays to decide whether a CT is needed, as was the practice before, it is often the first choice for imaging because of its accuracy. MR also is increasing in frequency of use. Technologists with credentialing in either of these specialties will be very marketable to employers.

    Employment

    Radiologic technologists held about 196,000 jobs in 2006. More than 60 percent of all jobs were in hospitals. Most other jobs were in offices of physicians; medical and diagnostic laboratories, including diagnostic imaging centers; and outpatient care centers.

    Knowledge
    Skills
    Abilities
    Tasks
    Activities
    Related College Curriculum
     
    Featured Online Colleges
     
    For more online colleges, click here.
     
    Colleges Offering Curriculum

    3780555 Radiologic Technologists and Technician Jobs Found


    Pro Staff is hiring a customer service representative for our client in Geneva, IL! The ideal individual is someone who has excellent interpersonal skills, has a positive attitude, detail oriented ...
    Digital People - Batavia, IL, USA - posted 2 days ago ago
    JOIN PRO STAFF FOR A JOB FAIR ON MONDAY, MAY 21ST! We are immediate openings for Call Center Representatives! Multiple shifts are available! On site interviews will be conducted! Where: Pro Staff: 40 ...
    Pro Staff - Minneapolis, MN, USA - posted 4 days ago ago
    Do you have previous customer service experience? Are you seeking for a new opportunity to provide excellent customer service and be part of a rewarding team? If yes, Pro Staff may have the right ...
    Pro Staff - New Brighton, MN, USA - posted 8 days ago ago
    Are you making $.62 per mile...$80k+ annually? Then give us a call. • Out two weeks • Home every other weekend • Run 48 States • Excellent Benefits (medical, dental, 401k, PTO) • Paid ...
    Pinnacle - Virginia Beach, VA, USA - posted 3 days ago ago
    Why Drive CTI Cryogenic Transportation is now seeking Company Drivers, Owner Operators and Team Drivers out of Pryor, OK. You can enjoy a home life with the Local/OTR opportunities we currently have ...
    CTI - Pryor, OK - Tahlequah, OK, USA - posted 5 days ago ago
    What makes DHL great? Our people! We know each employee's individual contributions make us the #1 Express Delivery and Logistics Company in the world. We are currently hiring Customer Service ...
    DHL Express - Tempe, AZ, USA - posted 6 days ago ago
    Dedicated Truck Driving Jobs for Livonia, MI to Alsip, IL Run PAM Transport is looking for drivers for company truck drivers running dedicated freight between Livonia, Michigan and Alsip, Illinois
    PAM Transport - Livonia, MI, USA - posted 2 days ago ago
    Owner Operator Truck Driver Jobs for Cleveland, OH to Gadsden, AL Run PAM Cartage Carriers -- the division of PAM Transport devoted to owner operators -- is looking for drivers for owner operator ...
    PAM Transport - Cleveland, OH, USA - posted 2 days ago ago
    Why Drive KTC Kenan Transport is now seeking Company Drivers and Owner Operators out of Nashville, TN. You can enjoy a home life with the Local opportunities we currently have available. Kenan ...
    KTC - Nashville, TN - Woodburn, KY, USA - posted 12 days ago ago
    Why Drive DTI DistTech is now seeking OTR Company Drivers in Iowa. Enjoy traveling the country with the OTR opportunities we currently have available. DistTech is offering competitive wages with our ...
    DTI - OTR - Iowa - Okoboji, Iowa, USA - posted yesterday ago
    Jobs results sponsored by ZipRecruiter
    More Radiologic Technologists and Technician Job Results...
     
     
     
     
     

    JOB SEARCH